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Abstract. The reduction of grain size from the microcrystalline regime into the nanocrystalline regime is known to
produce significant changes in the transport properties of polycrystalline ceramics. Part 1 of this series [1] described
the development of a pixel-based finite-difference “nested-cube model” (NCM), which was used to evaluate existing
composite models for the electrical/dielectric properties of polycrystalline ceramics over the entire range of grain
core vs. grain boundary volume fractions, from the nanocrystalline regime to the microcrystalline regime. Part 2
addresses grain shape and periodicity effects in such composite modeling, and the extraction of local materials
properties (conductivity, dielectric constant) from experimental impedance/dielectric spectroscopy data.
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Introduction

Impedance Spectroscopy (IS) is a powerful, non-
destructive technique that has been widely used to
characterize the electrical properties of conventional
microcrystalline electroceramics [2]. In order to corre-
late the impedance/dielectric spectroscopy (I/DS) data
with the different electro-active regions in the mi-
crostructure (grain core, grain boundary) a suitable
electrical analogy is required. In Part 1 of this pa-
per [1], the applicability of existing boundary-layer
and effective-media models to describe the electrical
behavior of nanocrystalline eletroceramics was inves-
tigated. Boundary-layer models, widely used to model
microcrystalline electroceramics [3], were found to be
appropriate at high grain core volume fractions (thin
grain boundaries), but they were found to poorly de-
scribe the electrical behavior when the grain core vol-
ume fraction (φ) was reduced (e.g., in the nanocrys-
talline regime). This is because boundary-layer models
are unable to describe the complex current distribution
within the nanoscale microstructure. For example, the
series BLM (S-BLM) ignores side-wall grain bound-
ary contributions, i.e., the “parallel path” in Fig. 1(a).

The series/parallel BLM (SP-BLM) [4] accounts for
side-wall contributions by connecting the side-wall
grain boundary path in parallel with the serial grain
core/grain boundary path, (see Fig. 1(a)), but these
paths are separate, with no interchange of current be-
tween paths. This limitation was overcome by de-
velopment of a pixel-based finite-difference model to
calculate the electrical properties, and actual current
distributions, for the BLM structure [1]. Termed the
“nested-cube model” (NCM), it consists of a 3D array
of cubic grain cores arranged on a simple cubic lattice
separated by homogeneous grain boundary layers; a
unit cell of the NCM is shown in Fig. 1(b). The NCM
is not analytically tractable and therefore the electrical
properties were solved numerically. A thorough de-
scription of the numerical model is given in Part 1 [1].

Another approach to modeling the electrical proper-
ties of electroceramics is by means of effective medium
theory. For low grain core volume fractions, the mod-
els of Maxwell-Wagner (MW) [5,6] and Zuzovsky and
Brenner (ZBM) [7] are in very good agreement. The
MW model is equivalent to the Hashin-Shtrikman [8]
upper and lower bounds for conductivity of an isotropic
two-phase mixture. We henceforth refer to this model
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Fig. 1. Schematic representations for (a) the brick-layer model
(BLM) and (b) the unit cell of the nested cube model (NCM).

as the MW-HS model. The ZBM consists of a spatially
periodic array (e.g., simple cubic) of spherical particles
in a continuous isotropic matrix; the simple cubic unit
cell is identical to the NCM, (Fig. 1(b)), except with
spherical instead of cubic grain cores. The slight dif-
ference between these models and the NCM at small
grain core volume fractions is expected based on the
difference in grain core geometry (spheres vs. cubes).
This will be discussed in detail later in this paper. The
ZBM is only valid below the percolation threshold (for
a simple cubic lattice of monosized spheres, the perco-
lation threshold (φt) is approximately 0.52). The MW-
HS model does not have a percolation threshold and is
valid over the entire volume fraction range.

Figure 2 summarizes the findings of Part 1 [1]
for the various boundary-layer and effective medium
models considered. The DC electrical conductivity
for each model is normalized by the DC conductiv-

Fig. 2. Normalized DC conductivity (conductivity divided by the
conductivity given by the MW-HS model) vs. grain core volume
fraction for various microstructural models. The ratio of grain core-
to-grain boundary conductivity was set at (σgc/σgb) = 1000.

ity of the MW-HS model. In each case, the ratio of
grain core-to-grain boundary conductivity was set at
(σgc/σgb) = 1000. Because the grain boundaries are less
conductive than the grain cores, the MW-HS model
(the horizontal line at σ/σMW-HS = 1.0) represents the
lower bound of conductivity for an isotropic two-phase
composite. Any predictions below the MW-HS hori-
zontal line, e.g., the brick-layer models (S-BLM and
SP-BLM), are physically unrealistic. The brick-layer
models are appropriate electrical descriptions only at
grain core volume fractions approaching unity (thin
grain boundaries) and are not suitable for describing
nanoceramic behavior.

As mentioned above, the ZBM and MS-HS models
are in close agreement at grain core volume fractions
less than 0.25. This is to be expected, given the spherical
grain cores involved in both cases. The rapid conductiv-
ity increase of the ZBM beyond φ = 0.25 corresponds
to the mutual approach of the spherical grain cores to-
wards the onset of percolation at φ = 0.52. The ZBM
is not valid beyond the percolation threshold.

The only model other than the MW-HS to span
the entire range of grain core volume fractions is the
nested-cube model. The agreement between the NCM
and the MW-HS at all volume fractions is noteworthy.
A similar agreement between the MW-HS model and
a lattice of isotropic cubes was reported by Whites and
Wu [9]. They argued that the minimal polarization in a
lattice of cubes, due to mutual interactions between the
edges and corners of adjacent cubes, leads to a reduc-
tion in the effective permittivity to a level very close to
the MW-HS lower bound.

Although both NCM and MW-HS models span the
entire range of grain core volume fractions, there are
two remaining issues to be addressed in the present
work. First, neither model is an exact representation
of an equiaxed polycrystalline ceramic. The NCM, as
represented by the unit cell in Fig. 1(b), consists of
cubic grain cores in a periodic arrangement, whereas
actual microstructures are more complicated (e.g., do-
decahedral grains, non-periodically arranged). Even
with cubic-shape grains, Lubomirsky et al. demon-
strated significant overlap of space charge regions
at grain boundaries and grain corners [10]. On the
other hand, the MW-HS model, as shown in Fig. 3,
is a non-periodic, space-filling array of self-similar
coated grain cores of widely varying sizes. Second, the
NCM is mathematically intractable, and can only be
solved numerically. This makes it difficult to extract lo-
cal property values from existing impedance/dielectric
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Fig. 3. Schematic representation of the MW-HS model.

spectroscopy (I/DS) data. The present work addresses
grain shape (and periodicity) effects in electrocom-
posite modeling, and the extraction of local electri-
cal/dielectric properties from experimental data.

Details of the Numerical Model

Specifics of the numerical model used to solve the
NCM are given in Part 1 [1]. A FORTRAN-77 finite
difference numerical program, named ac3d.f, was mod-
ified to perform pixel-based computer calculations at
finite frequencies. A given “microstructure” is repre-
sented as a 3D digital image. Each pixel of the image is
treated as a homogeneous phase of known admittance,
the admittance being modelled by a parallel (RC) cir-
cuit. For the NCM, pixels are assigned to either the
grain core or the grain boundary. A diagonalized com-
plex conductivity is assigned to the two phases. A sys-
tem size ranging from 203 to 803 pixels is employed to
represent the 3D structure of the NCM. In the compu-
tation process, each pixel has six orthogonal (RC) cir-
cuits extending from its center to the boundaries of the
pixel. Neighboring pixels are connected by joining the
two bonds together producing a 3D electrical network
with a finite difference node at the center of each pixel.
A conjugate gradient method is used to solve Laplace’s
equation at each frequency to give the complex conduc-
tivity of the microstructure. Real and imaginary con-
ductivities are then converted to impedance quantities
using standard equations.

To generate the periodic simple cubic lattice of the
NCM, it was necessary to add a shell of imaginary states
around the central grain and grain boundaries to main-
tain periodic boundary conditions. For a given grain
core volume fraction, the system size was varied to as-

Fig. 4. Standard equivalent circuit.

sess the effect of spatial resolution. A plot of conduc-
tivity versus 1/N (where N is the number of pixels) was
extrapolated to give the conductivity at 1/N → 0. The
computational uncertainty associated with the NCM,
due to the use of the 1/N extrapolation is very small,
less than one percent.

Analytical equations exist for the resis-
tance/conductance of the other models considered,
which could therefore be evaluated in terms of
complex conductivities. The same standard equations
were employed in each case to convert to impedance
format.

Once impedance (Z-plane) plots were generated,
commercial software (“Equivalent Circuit” [11]) was
used to fit the spectra in terms of the standard equiv-
alent circuit shown in Fig. 4. The resulting R and C
values were then used to extract local property values
(conductivity and dielectric constant) as a test of the
extraction procedure to be described later.

Results and Discussion

A comparison of the various models, both brick-layer
and effective medium, is shown in Fig. 2 for the case
of resistive grain boundaries (σgc/σgb = 1000). In each
case, conductivity was normalized by that of the MW-
HS model. As mentioned previously, the brick-layer
model values fall below those of the MW-HS lower
bound (the horizontal line at σ/σMW-HS = 1.0), such
that they are physically unrealistic. The ZBM is in good
agreement with the MW-HS model at low grain core
volume fractions (φ), but deviates strongly as its per-
colation threshold is approached (φ = 0.52). The NCM
behavior deviates slightly from the MW-HS model, but
approaches it at both extremes. In fact, with the excep-
tion of the ZBM, due to its percolation threshold, all
the models approach the MW-HS behavior at high grain
core volume fractions (thin grain boundaries).

McLachlan et al. [12] showed that the impedance/
dielectric responses of the brick-layer models and the
MW-HS model become indistinguishable at high grain
core volume fractions. It would appear that thin coat-
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Fig. 5. Differences between the NCM and MW-HS vs. grain core
volume fraction for (σgc/σgb) = 1000. Superimposed are “dilute
limit” conductivities vs. grain core volume fraction plots for two
phase composites involving isolated high conductivity particles of
various shapes in a less conductive matrix. (1) Cube, (2) Octahedron,
(3) Dodecahedron, (4) Icosahedron, (5) Sphere.

ings behave identically, regardless of grain morphology
(i.e., spheres vs. cubes). Similarly, finite element anal-
yses on “real” 2D microstructures [13–15] found
close agreement with “cubic” brick-layer structure
results, as long as the grains remained monosized and
equiaxed. This means that simplified morphologies,
whether spherical (e.g., in the MW-HS model) or cubic
(e.g., in the brick-layer models, including the NCM)
can adequately describe the impedance/dielectric
response of “real” electroceramics in the high grain
core volume fraction regime (i.e., microcrystalline ce-
ramics with thin grain boundary layers). Furthermore,
periodicity appears to be unimportant, since periodic
(brick-layer models) and non-periodic microstuctures
(e.g., MW-HS) yield similar results.

In the opposing limit (i.e., small grain cores), grain
core shape plays a more significant role. Figure 5
shows the difference between the NCM and the MW-
HS model for the case where σgc/σgb = 1000. Super-
imposed on the plot are “dilute limit” conductivities
vs. volume fraction plots for two-phase composites in-
volving isolated high conductivity particles of various
shapes in a less conductive matrix. Each shape of par-
ticle has an “intrinsic conductivity” ([σ ]�), the first
order coefficient of dispersed phase volume fraction
(φ) in the following equation [16]:

σ

σm
= 1 + [σ ]�φ + 0(φ2) + · · · (1)

Fig. 6. Intrinsic conductivities for the various shapes studied.

where σ is the conductivity of the composite, σ m is
the conductivity of the matrix phase, � is σp/σm where
σp is the conductivity of the dispersed particles, and
higher order terms are neglected. Figure 6 shows the
various shapes under consideration, along with their
reported intrinsic conductivities (for � = ∞) [17].
(A value of σ p/σ m = 1000 is essentially the same as
� = ∞.) The deviation in Fig. 5 of the NCM from
the MW-HS model at small grain core volume frac-
tions is clearly due to the different shape of particles.
Highly conductive cubes have an intrinsic conductivity
of 3.64 whereas spheres have an intrinsic conductiv-
ity of 3.0. The dilute limit behavior for isolated cubes
matches the NCM results at small grain core volume
fractions. Similarly, the dilute limit behavior for iso-
lated spheres precisely matches the MW-HS results
(both are horizontal lines at σ/σMW−HS = 1.0). In be-
tween the NCM and the MW-HS model, in decreasing
order are octahedral particles ([σ ]� = 3.55), dodeca-
hedral particles ([σ ]� = 3.18), and icosahedral parti-
cles ([σ ]�), = 3.13). The deviation from the MW-HS
model decreases as the shape of particle more closely
approximates that of a sphere (e.g., icosahedra and do-
decahedra). It should be stressed that these two polyhe-
dral shapes—isosahedra and dodecahedra—are most
often employed to model grain shape in polycrystalline
materials.

Although neither the NCM nor the MW-HS are re-
alistic microstructural representations of actual poly-
crystalline ceramics, they represent probable upper and
lower bounds for their impedance/dielectric response.
In fact, the MW-HS is the absolute lower bound for
isotropic two-phase composites with a less conductive
matrix (grain boundary) phase. In what follows we con-
sider the calculated difference between the NCM and
the MW-HS model as an estimated upper limit for the
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Fig. 7. Differences between the MW-HS and NCM for different ra-
tios of grain core-to-grain boundary conductivities, 10 and 1000.

difference between true polycrystalline ceramic behav-
ior and that of the MW-HS model.

The difference between the NCM and the MW-HS
model is dependent upon the ratio of conductivities
(σgc/σgb), as shown in Fig. 7. At a grain core-to-grain
boundary conductivity ratio of 10, the maximum dif-
ference between the two models is approximately 3%,
increasing to a maximum of approximately 9% at a ra-
tio of 1000. There is little or no change beyond this
point, i.e., at still higher grain core-to-grain boundary
conductivity ratios. In every case, the maximum differ-
ence occurs at a grain core volume fraction of approx-
imately 0.30. The triangular point on each curve will
be referred later.

We now turn to the extraction of local electrical
properties (conductivity, dielectric constant) from ex-
perimental impedance/dielectric spectra. This was first
accomplished using the S-BLM [18], which is appro-
priate only in the case of relatively thin grain bound-
aries. In a theoretical analysis of nanocrystalline ceram-
ics using the SP-BLM, Bouchet and co-workers [19]
found that experimental determination of the electrical
properties of nanocrystalline ceramics by impedance
spectroscopy is complicated by the superposition of
parallel and serial paths (see Fig. 1(a)). Numerical
fitting was required to resolve the different materials
properties. Bonanos and Lilley [20] derived an equiva-
lent circuit analogy for the MW-HS model by rational-
izing and comparing terms of equal power of angular
frequency (ω). The equivalent circuit consists of two
parallel RC networks connected in series, as shown in
Fig. 4. This equivalent circuit is identical to the circuit

for the S-BLM however, unlike the S-BLM, the circuit
parameters contain terms relating to the material pa-
rameters of both phases. Therefore each RC element is
a combination of the two phases.

R1 = 1

σgb

(
σgb Bε − εgb Bσ

σgb Aε − εgb Aσ

)
(2)

R2 = 1

Aσ

(
Aε Bσ − Aσ Bε

σgb Aε − εgb Aσ

)
(3)

C1 = εgb

(
σgb Bε − εgb Bσ

σgb Aε − εgb Aσ

)−1

(4)

C2 = Aε

(
Aε Bσ − Aσ Bε

σgb Aε − εgb Aσ

)−1

(5)

where R1 and C1 correspond to the grain boundary/low
frequency arc (or rightmost arc in Z-plane plots) and
R2 and C2 correspond to the grain core/high frequency
arc (or leftmost arc in Z-plane plots). The coefficients
were determined to be:

Aσ = 2σgb + σgc − 2φ(σgb − σgc) (6)

Bσ = 2σgb + σgc + φ(σgb − σgc) (7)

Aε = 2εgb + εgc − 2φ(εgb − εgc) (8)

Bε = 2εgb + εgc + φ(εgb − εgc). (9)

By manipulation of Eqs. (2)–(9), we were able to de-
rive four equations for the materials parameters in terms
of the circuit parameters (R1, C1, R2, C2) in Fig. 4,
which can be determined from complex impedance
plots if one knows the grain core volume fraction (φ).
The four equations are:

σgb = (1 − φ)

R1 (1 + 2φ)
(10)

σgc = −2R2 (φ − 1)2 + R19φ

R1 R2 (1 + 2φ)2 (11)

εgb = C1 (1 − φ)

1 + 2φ
(12)

εgc = −2C1 (1 − φ)2 + 9C2φ

(1 + 2φ)2 . (13)

Given the grain core volume it is possible to cal-
culate the local electrical properties (conductivity, di-
electric constant) of both grains and grain boundaries.
Unfortunately, it is virtually impossible to establish the
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volume fractions of grains cores/boundaries by inde-
pendent means (e.g., electron microscopy), especially
given the fact that electrical width (e.g., due to space
charge layers) and structural width (e.g., due to a dis-
crete phase) can be quite different.

Using Eqs. (10)–(13), however, we can come up
with a good estimate for the grain core volume fraction
and effective grain boundary (electrical) width. This
is done by fitting an experimental Z-plane plot with
dual arcs using commercially available software (e.g.,
“Equivalent Circuit” [11]) for the terms R1, C1, R2, and
C2. Then Eq. (13) is plotted as εgc vs. grain core volume
fraction. By constraining the value of εgc thus obtained
to be consistent with published bulk values for the ma-
terial in question, we arrive at an estimate for the grain
core volume fraction, and can proceed to calculate the
other parameters in Eqs. (10)–(13).

Fig. 8. (a) Simulated impedance response for NCM assuming σgc/σgb = 10 and εgc/εgb = 0.1 and a grain core volume fraction of 0.42, with
log(frequency) markers as shown. The solid line shows the non-linear least squares fit. (b) shows dielectric constant vs. grain core volume
fraction, and (c) conductivity vs. grain core volume fraction for both grain core and grain boundary phases using Eqs. (11)–(14).

We made two simulations, using the NCM, of
impedance response at or near the volume fractions
corresponding to the maximum difference between the
NCM and the MW-HS model in Fig. 7. The first was
made at a grain core volume fraction of φ = 0.42. The
ratios of grain-core-to-grain-boundary properties were
set at (σgc/σgb) = 10 and (εgc/εgb) = 0.1, based upon
grain core values of 10 and 3 × 10−4 S/cm for di-
electric constant and conductivity, respectively. This
corresponds to the triangular point on the lower curve
in Fig. 7. The resulting NCM Z-plane plot is shown in
Fig. 8(a). The non-linear least-squares fitting routine
of the deconvolution software [11] was used to find
the circuit parameters (R1, C1, R2, C2). These parame-
ters were then inserted into Eqs. (10)–(13). Figure 8(b)
shows dielectric constant vs. grain core volume fraction
and Fig. 8(c) shows conductivity vs. grain core volume
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Table 1. Fitted materials parameters for the circuit parameters
determined from Fig. 8(a).

Material property Input value Range for (εgc ± 50%)

Grain boundary 100 94–103
dielectric (εgb)

Grain boundary 3 × 10−5 (3.00–3.26) × 10−5

conductivity (σgb)
Grain core 3 × 10−4 (2.97–3.02) × 10−4

conductivity (σgc)

fraction for both grain core and grain boundary phases.
By constraining εgc to be within 50% of the known
value (εgc = 10 ± 5), the allowed grain core volume
fraction must be between 0.40 and 0.44. Table 1 gives
the corresponding ranges of the three unknown mate-

Fig. 9. (a) Simulated impedance response for NCM assuming σgc/σgb = 1000 and εgc/εgb = 0.1 and a grain core volume fraction of 0.32, with
log(frequency) markers as shown. The solid line shows the non-linear least squares fit. (b) enlarges the high frequency region to show the grain
core arc. (c) shows the dielectric constant vs. grain core volume fraction, and (d) conductivity vs. grain core volume fraction for both grain core
and grain boundary phases using Eqs. (11)–(14).

rial properties based on this uncertainty in grain core
volume fraction.

In spite of relatively large bounds on the known
parameter (εgc), the bounds on the other parameters
are relatively narrow, and the agreement with the NCM
input parameters is quite good.

The other simulation was at a grain core volume
fraction of 0.32, corresponding to the triangular
point in the upper curve of Fig. 6. In this case the
ratios of grain-core-to-grain-boundary properties were
set at (σgc/σgb) = 1000 and (εgc/εgb) = 0.1, based
upon grain core values of 3 × 10−4 S/cm and 10 for
conductivity and dielectric constant, respectively. The
resulting NCM Z-plane plot is shown in Figs. 9(a) and
(b). The non-linear least-squares fitting routine of the
deconvolution software [11] was used to find the circuit
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Table 2. Fitted materials parameters for the circuit parameters de-
termined from Fig. 9(a).

Material property Input parameters Range for (εgc ± 50%)

Grain boundary 100 99–106
dielectric (εgb)

Grain boundary 3 × 10−7 (2.96–3.17) × 10−7

conductivity (σgb)
Grain core 3 × 10−4 (2.80–2.84) × 10−4

conductivity (σgc)

parameters (R1,C1,R2,C2). These parameters were
then inserted into Eqs. (10)–(13). Figure 9(b) shows
dielectric constant vs. grain core volume fraction and
Fig. 9(c) shows conductivity vs. grain core volume
fraction for both grain core and grain boundary phases.
By constraining εgc to be within 50% of the known
value (εgc =10 ± 5), the allowed grain core volume
fraction must be between 0.325 and 0.350. Table 2
gives the corresponding ranges of the three unknown
material properties based on this uncertainty in grain
core volume fraction.

Again, in spite of relatively large bounds on the
known parameter (εgc), the bounds on the other pa-
rameters are relatively narrow. Whereas the agreement
with NCM grain boundary input parameters is accept-
able, the grain core conductivity is too small by ∼6–7%
which is not unexpected given the ∼9% difference in
overall conductivity between the two models in Fig. 7.

It should be stressed that we are employing a
MW-HS model-based analysis procedure to extract
local grain core/boundary properties from a nested-
cube microstructure and associated impedance plots.
Our success in doing so bodes well for analysis
of impedance spectra for actual polycrystalline mi-
crostructures. Based upon the data in Fig. 5, the dif-
ference between the impedance response of actual
microstructures (e.g., dodecahedral grain cores) and
the MW-HS model should be smaller than for the
NCM.

This said, we have not exhaustively considered all
possible combinations of the five variables (σgc, εgc,
σgb, εgb,φ), especially combinations involving con-
ductive grain boundaries and resistive grain cores
(σgb > σgc). Nevertheless, the extraction procedure of
Eqs. (10)–(13) appears to be robust and reliable for all
combinations considered to date involving σgc > σgb

(resistive grain boundaries).
In the case of very thin grain boundaries (φ →1),

however, it is impossible to obtain the grain boundary

volume fraction (1-φ) and thereby the grain boundary
thickness with any confidence.

There are several caveats, in applying Eqs. (10)–(13)
to the extraction of local electrical/dielectric properties
from impedance data on actual specimens. First of all,
the microstructures involved must be monosized and
equiaxed. Second, the time constants (RC products) of
the grain core and grain boundary arcs must be suffi-
ciently different to resolve two arcs in the impedance
spectra. This requires at least an order of magnitude
RC difference between them [21]. Third, neither arc
should be significantly depressed below the “real” axis
in Z-plane plots. In prior work we considered the issue
of arc depression, and showed that if both arcs were
comparably (and only slightly) depressed, an analy-
sis for local properties could still be made [21]. If
one arc is significantly more depressed than the other,
however, reliable deconvolution becomes quite diffi-
cult. Finally, the approach does not allow for spatially
varying properties, e.g., conductivity varying with dis-
tance from the physical grain boundary (e.g., due to
space charge layers). For very small grain core volume
fractions the grain cores are unlikely to be homoge-
neous, the transition region between the grain core and
grain boundary will become important, leading to spa-
tially varying properties. Future work will address such
complications.

Conclusions

Of several models considered, only the nested-
cube model (NCM) and the Maxwell-Wagner/Hashin-
Shtrikman (MW-HS) model are capable of describing
the electrical/dielectric properties of polycrystalline ce-
ramics over the entire range of grain core volume frac-
tions, from high (microcrystalline) to low (nanocrys-
talline). The other models fail due to unrealistic cur-
rent distributions (the series and series/parallel brick-
layer models, S-BLM, SP-BLM) or exhibit a percola-
tion threshold (the Zuzovsky-Brenner Model, ZBM).

The nested cube model (NCM) was used to in-
vestigate the influence of grain shape and periodicity
on the electrical/dielectric properties of polycrystalline
ceramics. At high grain core volume fractions (thin
grain boundaries), consistent with micro-structured
ceramics, boundary-layer models (S-BLM, SP-BLM,
NCM) and effective medium models (MS-HS model)
do equally well in describing behavior. Neither grain
shape nor periodicity seem to matter. (The brick-layer
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models are periodic, whereas effective media models
are not.) At low grain core volume fractions (thick grain
boundaries), consistent with nano-structured ceramics,
grain shape plays a more important role. The differ-
ences between models (NCM, MW-HS) are small, but
noticeable, and reflect the different “intrinsic conduc-
tivities” of the grain core “particles” involved (e.g.,
3.64 for cubes vs. 3.0 for spheres). The close match
between the ZBM and the MW-HS model at small
grain core volume fractions is to be expected, based
upon the spherical particles in each case. Smaller dif-
ferences (than with the NCM) are anticipated between
“real” polycrystalline ceramics, with icosahedral or do-
decahedral grains (and intrinsic conductivities of 3.13
and 3.18, respectively), and MW-HS effective medium
theory.

Microstructurally, the NCM can be considered as
the “worst case” difference with the MW-HS model. It
was employed to generate “experimental” impedance
data, from which equivalent circuit (RC)(RC) elements
were obtained by linear least-squares fitting. These pa-
rameters were employed to calculate grain core volume
fraction and local electrical/dielectric properties (grain
core and grain boundary), based upon a set of equa-
tions derived from the Lilley-Bonanos [20] treatment
of the MW-HS equation. The procedure involves con-
straining the grain core dielectric constant to be within
a specified range of published bulk values. Even with
relatively large bounds, the bounds on the grain core
volume fraction are small, enabling the other parame-
ters to be determined. The agreement with actual input
parameters is quite good, within a few percent in the
worst possible case.

It must be stressed that neither the NCM nor the
MW-HS model are accurate representations of “real”
electroceramic microstructures. Nevertheless, based
upon grain shape and intrinsic conductivity argu-
ments, the anticipated differences between the elec-
trical/dielectric behavior of such microstructures, if
monosized and equiaxed, and that of the MW-HS
should be smaller than for the NCM. This suggests
that the procedure we have demonstrated for extract-
ing local properties from a nested-cube microstructure
should be even more reliable for extracting local prop-
erties from “real” microstructures.
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